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ABSTRACT: Supramolecular complexes of a family of positively
charged conjugated polymers (CPs) and green fluorescent protein
(GFP) create a fluorescence resonance energy transfer (FRET)-
based ratiometric biosensor array. Selective multivalent inter-
actions of the CPs with mammalian cell surfaces caused
differential change in FRET signals, providing a fingerprint
signature for each cell type. The resulting fluorescence signatures
allowed the identification of 16 different cell types and
discrimination between healthy, cancerous, and metastatic cells,
with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial
classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor
was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified.
Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific
biomarkers or cell labeling.

■ INTRODUCTION

Combating cancer demands fast and efficient detection and
monitoring of the disease progress. A generalized approach for
identifying different cancer types and states is achieved by
profiling their genomic,1 transcriptomic,2 proteomic,3 and
metabolomic4 signatures that provide a reliable correlation
between the healthy and disease state. In addition to identifying
cancers and their subtypes, profiling molecular signatures of a
cell type allows prediction of potential neoplastic trans-
formation of normal cells or benign tumors,5 enabling the
personalized screening of disease states. Notably, these
signature-based approaches identify wide varieties of cancer
types, overcoming limitations of traditional specific biomarker-
based methods such as the lack of appropriate markers for
every cancer type and false positive diagnosis.6 While specific
intracellular signatures are promising for cancer cell detection,
phenotypic signatures of cell surfaces7 enable construction of a
rapid, simple, and generic diagnostic tool for identifying cell
types and their states. The surface signature-based sensing
method applies to any cell type and makes additional
processing steps to extract the genetic materials, proteins,
glycoproteins, or other biomarkers unnecessary.

Differential sensor arrays featuring cross-reactive receptors
provide an ideal platform for surface phenotype-based
mammalian cell detection. The differential sensing methods
(also called “chemical nose/tongue”) create a unique response
signature for each analyte through differential receptor-analyte
binding interactions, allowing them to be “trained” to identify
diverse analytes both individually and in mixtures.8 The
signature-based strategy is a powerful technique for the
detection of bioanalytes including amino acids,9 carbohy-
drates,10 proteins,11 and bacteria.12 Likewise, biosensor arrays
with nonratiometric sensor responses have been developed for
profiling cell-surface signatures, enabling identification of a few
different mammalian cell types.13 We envisage that a
generalized biosensor array with ratiometric output, high
sensitivity, and minimum number of sensor elements would
provide robust and universal cell diagnostics.
Thanks to their easily tailorable multivalent functionalities

and excellent light harvesting properties, water-soluble
conjugated polymers offer an excellent scaffold for cell
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surface-based biosensor design.14 Unlike small-molecule
fluorophores, the delocalized electronic structure of CP
backbones with large numbers of light absorbing units allows
efficient intra- and interchain energy transfer that amplifies the
signal of acceptors.15 Moreover, their optical properties (e.g.,
absorption and emission) are sensitive to conformational or
environmental changes, enabling sensitive detection of the
subtle differences between analytes.15,16 A key feature of CPs
containing pendant charged functional groups is their ability to
form supramolecular complexes with charge complementary
macromolecules, producing fluorescence quenching or fluo-
rescence resonance energy transfer (FRET). Using the FRET
modulation mechanism, CPs have provided simple, sensitive,
and ratiometric platforms for detecting bioanalytes17 including
nucleic acids,18 proteins,19 glycans,20 and bacteria.21 While
functionalized CPs have demonstrated cell recognition
abilities,22,23 utilizing them in FRET-based cell sensing
platforms could be instrumental in increasing the sensitivity
and minimizing the common interferences in the conventional
cell sensing methods, caused by the sample heterogeneity (cell
morphology, and size) and phenotypic diversity.
Herein, we introduce a new biosensor using supramolecular

conjugates of CP-green fluorescent protein (GFP) that
provides a universal platform for the rapid (within minutes)
and sensitive (only ∼2000 cells) identification of diverse
mammalian cell types utilizing their “fingerprint” surface
phenotypes. The key feature of this biosensor is the cell
binding-mediated generation of a ratiometric response that
cancels out experimental factors such as the sample variability,
total sensor concentration, and instrument variation; we
completely differentiate 16 different cell types with healthy/
tumorigenic/metastatic states. Moreover, emission ratioing to
estimate the FRET response increases the reproducibility and
reliability of detection, a major requirement for nonspecific

array-based sensors. Notably, this ratiometric sensor array not
only works significantly better than the quenching-based
nonratiometric CP array, its ability to profile diverse cell
types with challenging features such as isogenic origin,
difference in metastatic potency, and subtle variation in
glycosylation patterns based on cell-surface features makes it
a generalized cell detection toolkit.
The underlying principle of mammalian cell sensing by our

CP-based ratiometric biosensor is illustrated schematically in
Figure 1. Herein, assembly of cationic CPs with charge
complementary GFP produces supramolecular assemblies that
exhibit FRET processes, where the polymers and GFP act as
the donor and acceptor, respectively. Multivalent binding of the
polymers with cell surfaces modulates the FRET signal of the
CP-GFP complexes, and provides a direct transduction of the
binding events. The differential interactions between the
polymers and cell surface functionalities (such as proteins,
lipids, and glycans) generate changes in FRET responses that
are characteristic of a cell type. Subsequently, chemometric
analysis on such responses creates reference patterns for
different cells (“training set”) that identify unknown samples
(“test set”).

■ RESULTS AND DISCUSSION

We constructed four supramolecular FRET pairs using GFP
and water-soluble functionalized CPs. Unlike small molecule
fluorophores, the chromophore in GFP is protected inside a
robust β barrel protein structure,24 providing excellent
fluorescence properties including high photostability. Another
advantage of using GFP as a fluorophore is its strong
electrostatic interactions with cationic molecules, owing to
net negative charges under the experimental buffer conditions
(pH 7.4) (Table S2). On the other hand, the ease of

Figure 1. Schematic illustration of FRET-based cell sensing using CP-GFP complexes. (a) The polymers and GFP form supramolecular complexes
through electrostatic interactions, giving rise to FRET responses that are modulated when the complexes interact with cell surface. (b) Chemical
structures and characteristics of the cationic CPs used in the study. Mn: number-average molecular weight; Mw: weight-average molecular weight;
PDI: polydispersity index.
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functionalization of the CP backbone made it possible to
synthesize poly(p-phenyleneethynylene)s P1−P4 (Figure 1b)
with tailored cationic charge densities and degrees of
polymerization25 that are expected to display differential
binding with GFP. These CPs were selected for the cell
sensing assay based on previous studies that demonstrated their
effectiveness in profiling cells through differential binding.23 We
estimated the overlap integral (Table S3) between the emission
spectra of the CPs and the absorption spectrum of GFP (Figure
S2) that satisfied the requirement26 for FRET. Therefore, upon
excitation at the P1−P4 absorbance band of 430 nm, the CP-
GFP supramolecular complexes exhibit efficient FRET from the
CPs to GFP (Figure 2a and S3), with decreased fluorescence

emission at 466 nm and sensitized emission at 510 nm. The
results for the spectral overlap integral (J), Förster distance
(R0), maximum energy transfer efficiency (Emax), and donor−
acceptor separation distance (R) are summarized in Table S3.
The short separation distance among all the FRET pairs
indicates good supramolecular affinity between the CPs and
GFP.

To develop the sensing arrays, we determined the ratio of CP
and GFP that corresponds to maximum FRET efficiency as
estimated from the polymer fluorescence loss27 (Figure 2b and
S4). Fitting of the titration data (Figure 2b and S5) revealed
differential affinities (Table S4) between the four CPs and GFP,
indicating the possibility of selectivity-based sensing. Fluo-
rescence titration with P5 (Figure S1 and S3), the negative
control, demonstrates that the primary interaction between
polymer and GFP is electrostatic. Once the optimal CP-GFP
ratio was determined, we prepared the sensors by mixing
appropriate stoichiometry of polymer and GFP, and tested the
ability of this sensor array to detect mammalian cells using
ratiometric emissions. Titration of the CP-GFP complexes with
different concentrations of cell suspensions showed a stable and
differentiable change in FRET response with as few as 2000
cells. Using the initial linear slope, a calibration curve of cell
concentration-dependent FRET responses (such as Figure S6)
would allow quantitative detection of cells within the limited
dynamic range.
As a robust starting point for mammalian cell sensing, we

sought to differentiate between genetically identical (isogenic)
cells with healthy and cancerous states. In sensor development,
the differentiation of isogenic cells presents a particularly
challenging task for signature-based sensors owing to the lack of
cell-surface phenotypic differences that arise from genetic
diversities. Therefore, the isogenic cells provide ideal targets for
sensor validation. We tested three murine cell lines obtained
from the mammary fat pads of BALB/c mice as the reliable
isogenic targets: CDβGeo, pTD, and V14 that are respectively
normal, cancerous, and metastatic cell types28 (Table 1).

Incubation of the cells with the CP-GFP complexes caused a
decrease in sensitized GFP fluorescence and an increase in
polymer fluorescence (Figure 3a), indicating dissociation of the
complexes by the competitive binding of the cationic polymers
with cells leading to FRET inhibition. Additionally, polymer
fluorescence is quenched due to aggregation of polymers on
cell surfaces23 (Figure S7) that depends on the polymer as well
as interacting cell types. The relative changes in FRET
responses were quantified by FR, as defined in eq 1:

= −FR 1
FRET
FRET0 (1)

where FRET and FRET0 are the ratio of emission intensities at
510 to 466 nm with and without cells, respectively. We
observed distinct differences in FRET response patterns from
the four independent polymer-GFP dyads for each cell line
(Figure 3b), indicating differential interaction of the polymers
and cell surfaces. Hierarchical clustering analysis (HCA) of the
FRET responses produced three distinct branches (Figure 3c),
each corresponding to a cell type. The distinct and character-

Figure 2. FRET between CPs and GFP. (a) Emission spectra as a
function of GFP concentration for the P3-GFP pair. [P3] = 8 nM; 5
mM sodium phosphate buffer. (b) Quenching of P3 fluorescence
(blue circles) and the corresponding FRET efficiency (green squares)
as a function of the increasing GFP concentration. Each value is the
average of three independent measurements and the error bars are the
± standard deviations (SD). Solid lines represent the best-fitted
curves, where the blue line is obtained from fitting the binding
equation based on the model of single set of identical binding sites and
the green line is obtained through fitting the Förster equation (see SI).

Table 1. Features of the Isogenic Murine and Human Cell
Lines with Their Cell Status

cell line tissue origin cell status

CDβGeo Breast Normal immortalized
pTD Breast Tumorigenic
V14 Breast Metastatic
NCI-H1299 (parental) Lung Metastatic
Subline-1 Adrenal Highly metastatic
Subline-2 Bone Highly metastatic
Subline-5 Ovary Highly metastatic
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istic responses for each cell type demonstrate the sensitivity and
selectivity of the CP-GFP sensor to cell surface functionalities,
indicating effective FRET response-based fingerprinting of cell
types/states.
Given the multidimensional nature of the sensor output, it is

essential to reduce the dimensionality of the data sets for
identifying the patterns and trends among the analytes, and
establishing a quantitative classifier to identify unknown
samples. For this purpose, we employed linear discriminant
analysis (LDA),29 a supervised statistical method that max-
imizes the ratio of between- vs within-class variation. Separation
between data points on an LDA plot demonstrates the
differences between them. LDA on the above FRET data set
(3 isogenic cell lines ×8 replicates ×4 CP-GFP complexes)
resulted in two canonical factors explaining the total variance. A
score plot constructed using the canonical factors produced
three nonoverlapping clusters corresponding to the three cell
lines (Figure 3d), indicating excellent discriminatory capacity of
the method. To assess the reliability of the LDA method in
correctly classifying sample observations, leave-one-out cross-
validation analysis was performed on all the response data. The
jackknifed analysis (a leave-one-out exercise on LDA) on the
data set revealed 100% cross-validation accuracy (Figure S8a),
demonstrating the LDA method to be a robust statistical tool
for this system. Furthermore, the Wilks lambda parameter for
the training set was derived to be 0.009 (F = 44.8, P = 0.0000),
the small value of which supports LDA to be a strong model for
the present analyses. Overall, the differential interaction of the
sensor combined with the robust statistical analysis suggests the

feasibility of FRET response-based identification of diverse
types of mammalian cells in a rapid, sensitive, and label-free
manner.
We tested the generality of the CP-GFP sensor using another

set of isogenic human cell lines: NCI-H1299, a nonsmall cell
lung cancer (NSCLC) line, and three derived anatomical site-
specific metastatic cell lines (subines) with different metastatic
propensity. Site-specific metastasis is an important factor in
determining cancer progression and therapeutic treatments. We
established three metastatic sublines (Table 1) using cells
isolated from metastatic lesions in the adrenal gland, bone, and
ovary that developed following arterial (intracardiac) inocu-
lation of human NCI-H1299 cells in mice.30,31 Multiple
passages in tissue culture and cell sorting provided pure
populations of the metastatic sublines. These three sublines
exhibited significantly enhanced metastatic capacity as well as
variable degrees of tissue tropism. We evaluated the in vitro
cultured parental NCI-H1299 cell line and the sublines using
the CP-GFP sensor array. The FRET response patterns from
these cells (Figure 4a) were found to be distinct, and
characteristic of each cell type. Analysis of the ratiometric
FRET responses by LDA resulted in three canonical
discriminants (77.8%, 20.2%, and 2.0%), with the two most
significant discriminants plotted in Figure 4b. Significantly, the
different cell types clustered into four nonoverlapping groups,
with 100% cross-validation accuracy (Figure S8b). These results
validate the ability of the sensor to discriminate between the
parental cancerous line and the metastasis-derived sublines, as

Figure 3. Detection of isogenic murine cells at different states. (a) Initial fluorescence spectrum (red) of the P2-GFP complex and final spectrum
upon incubation with CDβGeo cells. (b) Change in FRET responses (FR) from the CP-GFP complexes upon interacting with the isogenic murine
breast cell types, where each value is the average of eight independent measurements and the error bars are the ± SD. (c) Clustering analysis of the
FRET responses. Hierarchical clustering was performed on the raw data set (3 cell lines ×8 replicates ×4 CP-GFP complexes) using a correlation
metric and average linkage. (d) LDA score plot of the FRET responses. The analysis resulted in canonical scores with two discriminants explaining
93.4%, and 6.6% of total variance and was plotted with 95% confidence ellipses around the centroid of each group.
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well as between site-specific metastasis (adrenal, bone, and
ovary) based on the cell-surface phenotypic variations.
The versatility of the CP-GFP array sensor was further

demonstrated through the detection of (nonisogenic) human
cell types with different cell states. One normal breast cell line
MCF10A and four cancer cell lines were used in this study
(Table S5). The cancer cell lines comprised: HeLa (cervical
adenocarcinoma) and HepG2 (hepatocellular carcinoma),
derived from primary tissue sites; and MCF7 (breast
adenocarcinoma) and NT2/D1 (embryonal carcinoma),
derived from metastatic sites and containing metastatic features.
These healthy, cancerous, and metastatic cell types were
clustered into five respective groups through LDA on the FRET
responses (Figure S9), with 100% cross-validated accuracy
(Figure S8c). In all, the simple biosensor is a generic
mammalian cell sensor, highlighting that the molecular
interaction of the CP-GFP complexes with the cell surface
provides characteristic signatures for each mammalian cell type.
After validating the sensing platform, we focused on

differentially glycosylated cell lines to investigate the effect of
glycome structure on the ratiometric FRET response patterns,

as the mammalian cell surfaces are covered with dense layers of
glycans that largely regulate the extracellular biochemical
interactions. Given the electrostatic basis of the sensor, we
tested isogenic glycosaminoglycan (GAG)-modified cell lines
that provide a robust testbed to validate the interaction of the
polymers with cell-specific glycans as a sensing mechanism.32

We studied a wild-type and GAG mutant Chinese hamster
ovary (CHO) cell lines (Table 2) that are benign or
tumorigenic depending on the proteoglycan composition of
the cell surface.33 For example, mutant CHO cell types
defective in the synthesis of heparan sulfate (HS) proteoglycans
do not form tumors, whereas mutants with altered chondroitin
sulfate proteoglycans are tumorigenic.33a

Upon addition of the CHO cell variants to the CP-GFP
sensor array, differential FRET responses were observed for the
wild-type and glyco-engineered cell lines (Figure S10).
Unsupervised HCA was performed on the FRET responses
to visualize the relation between the wild-type and the
glycomutated cells. It is readily observed that the glyco-
engineered cells with diminished GAGs are classified into
different branches in the dendrogram than the wild-type cells
(Figure 5a), indicating the major contribution of proteoglycans
in generating the sensor responses. Together with other reports
on cationic polyelectrolytes,32,34 this study provides an insight
into the central role of proteoglycans in controlling the
polymer−cell interactions. Furthermore, we employed LDA on
the FRET responses that classified the 32 sample observations
(4 cell lines ×8 replicates) into four quantifiably distinct
clusters (Figure 5b) with 100% cross-validation accuracy
(Figures S8d), demonstrating their effective classification.
Therefore, subtle variation in GAG composition on the cell
surfaces can be reliably distinguished by the FRET sensor
system, providing a useful tool for glycan biomarker-based
cancer detection.
After demonstrating the selective polymer−cell surface

interaction for differentiating between diverse cell types, we
assessed the importance of each CP in generating the
differential FRET responses for each cell type. Analysis of the
FRET responses from all the 16 cell lines revealed that each of
the four CPs significantly contributes to the overall sensing
capabilities (see the discussion on contribution of each CP in
the Supporting Information). In addition, correlation (Pear-
son’s) of the canonical scores with FRET responses from each
CP (Figure S11) validated the involvement of the four
polymer-GFP dyads in the effective classification. Moreover,
we evaluated the usefulness of the ratiometric FRET signals in
cell detection compared to the fluorescence quenching of the
CPs on cell surfaces by incubating the polymers (P1−P4)
alone with the glyco mutant cells. The resulting fluorescence
quenching patterns were subjected to LDA that produced
overlapped clusters with 63% cross-validated accuracy (Figure
S13). Likewise, the metastatic sublines could be differentiated
only with 72% accuracy. Therefore, the ratiometric CP-GFP

Figure 4. Detection of murine isogenic site-specific metastatic cells.
(a) Change in FRET responses (FR) from the polymer-GFP
complexes upon interacting with the four murine metastatic cell
types, where each value is the average of six independent measure-
ments and the error bars are the ± SD. (b) LDA score plot of the
fluorescence responses. The analysis resulted in canonical scores with
three discriminants explaining 77.8%, 20.2%, and 2.0% of total variance
and was plotted with 95% confidence ellipses around the centroid of
each group.

Table 2. Features of the Chinese Hamster Ovary Cell Lines Used in the Current Studies

cell line features of the cell lines cell status

CHO-K1 Wild-type epithelial-like; derived as a subclone from the parental CHO cells Tumorigenic
pgsA-745 CHO-K1-dervied cells deficient in proteoglycans (∼8% of the parental cells) Nontumorigenic
pgsB-618 CHO-K1-dervied cells deficient in proteoglycans (∼15% of the parental cells) Tumorigenic
pgsD-677 CHO-K1-dervied cells deficient in heparan sulfate; 3−4 fold higher chondroitin sulfate than CHO-K1 cells Nontumorigenic
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sensor has a synergistic advantage over the polymers
themselves.
A key requirement for diagnostic applications of the

signature-based detection tools is the ability to identify
unknown samples. Building upon the training sets that we
established by the LDA clustering above, we performed tests on
a randomized set of 128 unknown samples prepared from these
cells. The unknowns were blinded during the measurements
and analysis. An algorithm was used in LDA to compute the
Mahalanobis squared distance between the test samples and
each cell type within the corresponding training set. The test
samples were classified to the cell type for which the distance
was minimal (Figure 6a). Using this approach, 121 of the 128
unknowns were correctly identified with a 94.5% accuracy
(Figure 6b and Table S10−S13), validating the reliability of the
sensor in detecting cells and the robustness of LDA clustering
methodology.
The above results demonstrate that fluorescence signatures

of polymer−cell interactions enable efficient differentiation and
identification of diverse healthy and cancerous cell types,
making the sensor useful in cancer diagnostics. However,
applications of the sensing approach in clinical settings
including real-time identification of an unknown cell type
(outside the training set) would rely on its ability to predict the
cell status from the known training set. Analysis of the above
experimental results together with previous reports30,35 on
selectivity-based cell sensors indicates a clear demarcation
between normal and diseased cells/tissues, suggesting the

feasibility of discernible patterns of healthy and malignant cells.
In addition, construction of a global database of fluorescence
fingerprints of a large number of healthy and cancer cells would
ensure accurate and rapid identification of malignancies at
different stages. Development of diverse polymer structures,
enhancement of sensor−analyte selectivity, and evaluation of
appropriate statistical methods for large data analysis would
likely constitute the next steps to realize the broader
applicability of the fingerprinting approach in clinical
biodiagnostics.

■ CONCLUSIONS
In summary, we have developed an efficient and highly sensitive
ratiometric sensor array using CP-GFP supramolecular
complexes and demonstrated its utility in identifying
mammalian cells in minutes. The biosensor benefits from the
high fluorescence sensitivity as well as signal amplification
effects of the CPs, and the strong affinity of the macromolecular
fluorophore GFP to CP with efficient FRET capability,
enabling sensitive and reliable identification of 16 different
cell types. Notably, isogenic healthy, cancerous, and metastatic
cells that possess the same genetic background were readily
discerned using only four CP-GFP dyads, requiring only 2000
cells. The sensor array detects the overall molecular differences
on the cell surfaces; importantly, its ability to differentiate
between isogenic cells differing in glycosylation patterns opens
up new opportunities for cancer diagnostics using glycan
biomarkers. Given the ratiometric nature, these systems have
the potential to study disease state-dependent biophysical

Figure 5. Sensing of isogenic glycan-engineered cell types. (a)
Clustering analysis of the FRET responses obtained from the four
CHO cell types. Hierarchical clustering was performed on the FR
values (4 CHO cell lines ×8 replicates ×4 CP-GFP complexes) using a
correlation metric and average linkage. The numbers at the bottom
correspond to the replicates. (b) LDA score plot of the FRET
responses. The analysis resulted in canonical scores with three
discriminants explaining 85.5%, 13.0%, and 1.5% of total variance and
is plotted with 95% confidence ellipses around the centroid of each
group.

Figure 6. Identification of unknown samples. (a) Schematic of
unknown detection using LDA, where d is the squared Mahalanobis
distance. (b) Result of unknown detection using a LDA algorithm (see
SI methods section S13).
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changes on cell surfaces that would not depend on sampling.
Furthermore, the availability of polymers in a variety of colors
arising from backbone and side-chain modifications,36 and a
range of fluorescent proteins,37 should enable fabrication of
multichannel sensors, allowing one-well detection32,38 of
bioanalytes in a ratiometric and multiplexed format. Taken
together, this first ever ratiometric sensor array for mammalian
cell holds great promise for profiling benign and cancer cells,
personalized screening of disease states, creating cellular
imaging agents, and cell-based high-throughput screening of
therapeutics.
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